A Neuro-Symbolic Hybrid System Methodology for Quality Inspection on Artificial Textures
نویسندگان
چکیده
The Neuro-Symbolic Hybrid Systems (NSHS) are used to solve problems where there exists a necessity of combining and integrating the artificial neural networks and the symbolic representations in only one system in order to obtain better results. We developed a NSHS Methodology to integrate the knowledge of a human expert and the numeric knowledge obtained from a computer vision process. We implement the methodology to solve a quality inspection problem in artificial textures. The construction of neuro-symbolic integration strategies allows us defining an adequate type of neuro-symbolic system to obtain an increment of the efficiency of an inspection task, which is shown with the better results obtained compared with other approaches. Key-Words: Computer Vision, Neuro-Symbolic Hybrid Systems, Artificial Neural Networks, Production Rules
منابع مشابه
Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملNeuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns
Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...
متن کاملINSS : un système hybride neuro-symbolique pour l'apprentissage automatique constructif
Various Artificial Intelligence methods have been developed to reproduce intelligent human behaviour. These methods allow to reproduce some human reasoning process using the available knowledge. Each method has its advantages, but also some drawbacks. Hybrid systems combine different approaches in order to take advantage of their respective strengths. These hybrid intelligent systems also prese...
متن کاملNeuro-Symbolic Hybrid Systems
Actually, the Hybrid Systems (HS) approach is very used to solve problems where different knowledge representations are involve in one system. This integration has the advantage to compensate the weakness of one or another system complementing their strengths. The Neuro-Symbolic Hybrid Systems (NSHS) arise of the HS as an approach that offer the possibility to implement robust systems where the...
متن کاملThe use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008